| g - '-° D
Information System Design

Lecture 2: Object Oriented Analysis and Design

Dr. Moustafa Alzantot

Programming vs Chess

* | earning how to program is quite
similar to learning how to play chess.

* You first learn how to move pieces
(I.e. writing pieces of working code)

 But to become a professional player,
you need to do a lot of handwork.

Programming vs Chess

* Chess benefits from imagination and
visualization chess.

® S0 does programming.

Programming vs Chess

 And both involve a lot of pattern
recognition.

® /dentifying if a given position (or
problem) is similar to a previously
seen and you know the best move
(or how to solve)

Software Design Patterns

 Design Pattern: a practical proven solution to a recurring design problem.

* Design patterns are not pieces of code Iin any programming language, but
they act as templates that you can follow to solve a problem.

* They are highly optimized solutions designed and revised by experts.

History of Design Patterns

The concept of “Patterns” originated in architecture. Often attributed to

Christopher Alexander, an American architect who wrote a book “A Pattern

Language” in 1977.

“ ... each pattern represents our current best guess as to what arrangement of

the physical environment will work to solve the problem presented.”

fr

A Pattern Language

Towns -Buildings - Construction

Christopher Alexander
Sara Ishikawa - Murray Silverstein

WITH
Max Jacobson -Ingrid Fiksdahl-King

Shlomo Angel

History of Design Patterns

Software Design Patterns

e |na 1995, four authors wrote a book about design

patterns for software. | esion Patis TTIN
. i Elements of Reusable
Design Patterns: Elements of Reusable Object- Object-OrientsiEaiiare
Oriented Software rich Gamall
ohn Viessices

Widely known as the “Gang of Four (GoF)” book.

™~
=
-
2
>
-
£
-
>
-
=
Z
<
B
¥ 4

L |

History of Design Patterns

Software Design Patterns

 The GoF book defined 23 useful design patterns for o >

recurring situations. |)eS107) l);ll CITS B

?

. . . lements of Reusable -

* [hese design patterns are categorized by thelir in.m .-u'.:.::m: Software
purpose into 3 categories: rich Gamal
XiChard Heln
Ralph lohnson

onn Vissides

e Creational

%
B
-
5
’
-
e
-
Z

 Structural

S

e Behavioral

L |

History of Design Patterns

Software Design Patterns

GoF Design Patterns

b

oy

Desion Patterns

Flements of Reusable

Creational

Factory Method Adaptor - class Interpreter Object-Orientéd Software Z

Template Method .

trich Camma o

Qll h.l'c! "ﬁ*n 7'

Abstract Factory Adaptor-object Chain of responsibility Ralph |ohnson §
lohn Viessides

.

.
-

-

Command

Builder
Prototype

Bridge
Composite lterator
Mediator
Memento
Observer

State
Strategy

Visitor

Facade

SIS N 1A

el

Proxy

0

History of Design Patterns

Software Design Patterns

 More design patterns emerged later. . :
Desien Patterns

Elements of Reusable

Object-Oriented Software

tnich Camma
Richard m‘un
Ralph lohnson

lohn Vissicdes

ETU LY

Lo

Reasons for using Design Patterns

Software Design Patterns

Why to use design patterns ?

e Saving time/effort to design a solution for an already solved problem.

 They are proven to be highly optimal. Since they have been designed
and revised by experts.

 Makes it easier to document and explain your design.

Real world example:

Design a class that can have only one instance in the program ?

r b

«»

Real world example:

Design a class that can have only one instance in the program ?

IS ADES T'_J!"A'ITEBN
Aﬂ lED

THESINGLETON .

_ eme.‘g_g"g,

Real world example:

Design a class that can have only one instance in the program ?

IS ADES T'_J!"A'ITEBN
Aﬂ lED

Singleton

-“nstance

-Singleton()
+getinstance(): Singleton

e——
“nstance

THESINGLETON .

_ eme.‘g_g"g,

Real world example:

USER EOUEST /
ACTION UPDATE
UP:7 v

Model-View-Controller (MVC) pattern is widely used in
web and mobile app development frameworks

Design Patterns are used Everywhere

IIESIGN PATTERNS

. -
-
-
B
4
L]

Object Oriented Analysis and Design Crash Course

Object Oriented Design

* Object Oriented Programming languages allows programmer to create
models of how objects are represented in the world.

 Major design principles to create OO program:
*Abstraction
*Encapsulation
*Decomposition

*(Generalization

Object Oriented Design

* Abstraction:
* One way humans use to deal with complexity.
« Simplifying a concept in the problem domain.

* Abstraction breaks a concept down to a simplified description that
ignores unimportant details and emphasize the essentials needed for the
concept within the problem context.

Object Oriented Design

e Abstraction:

An abstraction includes the essential details relative to the perspective of the viewer

Object Oriented Design

 Abstraction:
 Each object has attributes and behaviors (functions).

 The problem context determines what are the relevant attributes and
behaviors.

Object Oriented Design

 Encapsulation:
 Bundling together the object attributes and behaviors.

» Certain attributes and behaviors are accessible by other objects while
others are not.

Object Oriented Design

e Decomposition:

 Decomposition allows taking separate parts with different functionalities
and combining them together to create a whole.

* |t makes it possible to break larger problems into smaller parts that are
easler to understand and solve.

Object Oriented Design

* Generalization:
* (Generalization helps reduce redundancy when solving problems.
* In OO modeling, generalization is achieved by inheritance.
* Inheritance: child class inherits attributes and behaviors from parent class.

e Common characteristics and behaviors between two or more classes are defined in a
common parent class.

* Other terminology: (Parent : Superclass) and (Child : Subclass)

UML

 UML: Unified Modeling Language.

* A standard visual modeling language for documenting software architecture.

UML class diagrams

 Each class is represented as a box with three sections

e Class name: the name of the class.

Class Name

* Properties: attributes or member variables.

Properties

 Operations: methods or behaviors.

Operations

UML class diagrams

 Example:
Student

e The (+) or (-) symbols define | 9P o

which attributes/behaviors

-degreeProgram: String

are public (accessible within | +getGPA(): float
and outside the class) and +setGPA(float) |
+getDegreeProgram(): String

which _ _ +setDegreeProgram(String)
ones are private (accessible

only within the class)

UML class diagrams

 Decomposition takes separate parts and combines them together to form a
whole.

* Three different types of decomposition according the relationship between the
whole and the parts:

* Association
 Aggregation

 (Composition

UML class diagrams

* Association: a loose relationship between two objects. They interact with each
other for some time, but they are not dependent on each other.

* Association relationship is represented using an arrow.

 The (0..") means that each Person is associated with zero or more Hotel objects.

Person

0.* 0.* Hotel

UML class diagrams

 Association: a loose relationship between two objects. They interact with each
other for some time, but they are not dependent on each other.

* Association relationship is represented using an arrow.

 The (1..*) means that each Student is associated with 1 or more Teacher objects.

Teacher

UML class diagrams

 Aggregation: is “has-a” relationship. Aggregation is “part-of” relationship.

* Aggregation relationship Is represented by a straight line with an empty diamond
at one end (the whole).

UML class diagrams

 Composition: is strong “has-a” relationship. The whole cannot exist without the
part, if the whole is destroyed the parts are destroyed too.

 [he composition relationship Is represented by a straight line with a black
diamond at one end (the whole).

Person

Brain Heart Legs

Association vs Composition vs Aggregation

 Read more:
https://www.visual-paradigm.com/guide/umi-unified-modeling-language/umil-
aggregation-vs-composition/

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-aggregation-vs-composition/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-aggregation-vs-composition/

UML class diagrams

Inheritance

* Inheritance can be represented as solid-lined arrow.

 The parent (superclass) is at the head of the arrow.

Animal

Lion

UML class diagrams

Inheritance

* Inheritance can be represented as solid-lined arrow.

 Inherited attributes and behaviors do not need to be rewritten In subclasses.

Animal

#numberOfLegs: int
#numberOfTails: int
#name: String

+eat()

+walk()

+run()
Lion

+ Roar()

