
Dr. Moustafa Alzantot

Information System Design
Lecture 2: Object Oriented Analysis and Design

Programming vs Chess

• Learning how to program is quite
similar to learning how to play chess.

• You first learn how to move pieces
(i.e. writing pieces of working code)

• But to become a professional player,
you need to do a lot of handwork.

Programming vs Chess

• Chess benefits from imagination and
visualization chess.

• So does programming.

Programming vs Chess

• And both involve a lot of pattern
recognition.

• Identifying if a given position (or
problem) is similar to a previously
seen and you know the best move
(or how to solve)

Software Design Patterns

• Design Pattern: a practical proven solution to a recurring design problem.

• Design patterns are not pieces of code in any programming language, but
they act as templates that you can follow to solve a problem.

• They are highly optimized solutions designed and revised by experts.

History of Design Patterns

• The concept of “Patterns” originated in architecture. Often attributed to
Christopher Alexander, an American architect who wrote a book “A Pattern
Language” in 1977. 
 
“ … each pattern represents our current best guess as to what arrangement of
the physical environment will work to solve the problem presented.”

History of Design Patterns
Software Design Patterns

• In a 1995, four authors wrote a book about design
patterns for software.

Design Patterns: Elements of Reusable Object-
Oriented Software

Widely known as the “Gang of Four (GoF)” book.

History of Design Patterns
Software Design Patterns

• The GoF book defined 23 useful design patterns for
recurring situations.

• These design patterns are categorized by their
purpose into 3 categories:

• Creational

• Structural

• Behavioral

History of Design Patterns
Software Design Patterns

History of Design Patterns
Software Design Patterns

• More design patterns emerged later.

Reasons for using Design Patterns
Software Design Patterns

Why to use design patterns ?

• Saving time/effort to design a solution for an already solved problem.

• They are proven to be highly optimal. Since they have been designed
and revised by experts.

• Makes it easier to document and explain your design.

Real world example:

Design a class that can have only one instance in the program ?

Real world example:

Design a class that can have only one instance in the program ?

Real world example:

Design a class that can have only one instance in the program ?

Real world example:

Model-View-Controller (MVC) pattern is widely used in  
web and mobile app development frameworks

Design Patterns are used Everywhere

Object Oriented Analysis and Design Crash Course

Object Oriented Design

• Object Oriented Programming languages allows programmer to create
models of how objects are represented in the world.

• Major design principles to create OO program:

•Abstraction

•Encapsulation

•Decomposition

•Generalization

Object Oriented Design

• Abstraction:

• One way humans use to deal with complexity.

• Simplifying a concept in the problem domain.

• Abstraction breaks a concept down to a simplified description that
ignores unimportant details and emphasize the essentials needed for the
concept within the problem context.

Object Oriented Design

• Abstraction:

Object Oriented Design

• Abstraction:

• Each object has attributes and behaviors (functions).

• The problem context determines what are the relevant attributes and
behaviors.

Object Oriented Design

• Encapsulation:

• Bundling together the object attributes and behaviors.

• Certain attributes and behaviors are accessible by other objects while
others are not.

Object Oriented Design

• Decomposition:

• Decomposition allows taking separate parts with different functionalities
and combining them together to create a whole.

• It makes it possible to break larger problems into smaller parts that are
easier to understand and solve.

Object Oriented Design

• Generalization:

• Generalization helps reduce redundancy when solving problems.

• In OO modeling, generalization is achieved by inheritance.

• Inheritance: child class inherits attributes and behaviors from parent class.

• Common characteristics and behaviors between two or more classes are defined in a
common parent class.

• Other terminology: (Parent : Superclass) and (Child : Subclass)

UML

• UML: Unified Modeling Language.

• A standard visual modeling language for documenting software architecture.

UML class diagrams

• Each class is represented as a box with three sections

• Class name: the name of the class.

• Properties: attributes or member variables.

• Operations: methods or behaviors.

UML class diagrams

• Example:

• The (+) or (-) symbols define 
which attributes/behaviors
are public (accessible within
and outside the class) and
which 
ones are private (accessible
only within the class)

UML class diagrams

• Decomposition takes separate parts and combines them together to form a
whole.

• Three different types of decomposition according the relationship between the
whole and the parts:

• Association

• Aggregation

• Composition

UML class diagrams

• Association: a loose relationship between two objects. They interact with each
other for some time, but they are not dependent on each other.

• Association relationship is represented using an arrow.

• The (0..*) means that each Person is associated with zero or more Hotel objects.

UML class diagrams

• Association: a loose relationship between two objects. They interact with each
other for some time, but they are not dependent on each other.

• Association relationship is represented using an arrow.

• The (1..*) means that each Student is associated with 1 or more Teacher objects.

UML class diagrams

• Aggregation: is “has-a” relationship. Aggregation is “part-of” relationship.

• Aggregation relationship is represented by a straight line with an empty diamond
at one end (the whole). 

UML class diagrams

• Composition: is strong “has-a” relationship. The whole cannot exist without the
part, if the whole is destroyed the parts are destroyed too.

• The composition relationship is represented by a straight line with a black
diamond at one end (the whole).

Association vs Composition vs Aggregation

• Read more: 
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-
aggregation-vs-composition/

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-aggregation-vs-composition/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-aggregation-vs-composition/

UML class diagrams
Inheritance

• Inheritance can be represented as solid-lined arrow.

• The parent (superclass) is at the head of the arrow.

UML class diagrams
Inheritance

• Inheritance can be represented as solid-lined arrow.

• Inherited attributes and behaviors do not need to be rewritten in subclasses.

